





# Dealing with Nonresponse Using Follow-up

#### 7th International Total Survey Error Workshop (ITSEW 2013)

M.A. Hidiroglou and V. Estevao Statistics Canada June 3, 2013



### Overview

- 1. Introduction
- 2. Estimation with no follow-up sample
- 3. Follow-up sample: design and estimation
- 4. Hansen and Hurtwitz (1946)
- 5. Conclusion



### **1. Introduction**

Statistics

- With *some loss* in generality, assume sample *s* of size *n* selected by SRWSWOR from population *U* of size *N*.
- Suppose  $n_1 < n$  units respond to the survey, while the remaining ones do not.
- Nonresponse may lead to bias in estimates
- Two different approaches for handling nonresponse (Bethlehem 1988)
  - 1. Reweigh the data: use auxiliary information in estimation
  - 2. Follow-up intensively a sample of the nonrespondents

 $n_1 < n$ 



#### No auxiliary data available

• Estimator of total  $Y = \sum_{k \in U} y_k$  using responding units only

$$\hat{Y}_1 = \frac{N}{n_1} \sum_{k \in s_1} y_k$$

- Bias can be evaluated in one of two ways:
  - Fixed response approach (Cochran 1977)
  - Random response approach (Hartley 1946)

#### Fixed response approach

- Consider two groups:
  - Responding group  $U_1$  with mean  $\overline{Y}_1$
  - Non responding group  $U_2$  with mean  $\overline{Y}_2$
  - Bias:  $B(\hat{Y}_1) = N_2(\overline{Y}_1 \overline{Y}_2)$

#### Random response approach

• Response probability (unknown):  $\theta_k > 0, k \in U$ 

• Approximate bias: 
$$B(\hat{Y}_1) = N \frac{\sum_U y_k \theta_k}{\sum_U \theta_k} - Y$$

#### Auxiliary data available

Info-s :  $\mathbf{x}_k$  is known for all  $k \in s \rightarrow \hat{Y}_{1s} = \sum_{k \in s_1} w_{ks} y_k$ 

Info-*U* : Info-*s* and  $\sum_{k \in U} \mathbf{x}_k$  known  $\rightarrow \hat{Y}_{1U} = \sum_{k \in s_1} w_{kU} y_k$ 

where  $w_{ks}$  and  $w_{kU}$  are appropriate regression weights

- Calibrate from response sample to full sample/universe
  - Info *U*: Fuller, Loughlin and Baker (1994)
  - Info-*s* and *U*: Lundström and Särndal (1999)



- Assuming response probabilities  $\theta_k$
- Bias of  $\hat{Y}_{1s}$  or  $\hat{Y}_{1U}$  is approximately

$$-\sum_{U}(1-\theta_k)(y_k-\boldsymbol{x}_k^T\boldsymbol{B}_{U\theta})$$

where

$$\boldsymbol{B}_{U\theta} = \left(\sum_{U} \theta_k \boldsymbol{x}_k \boldsymbol{x}_k^T\right)^{-1} \left(\sum_{U} \theta_k \boldsymbol{x}_k \boldsymbol{y}_k\right)$$



- Unbiased if  $\theta_k^{-1} = 1 + \lambda^T x_k$ 
  - Fuller, Loughlin and Baker (1994) or Lundström and Särndal (1999)
- How does one verify in practice! Can't!
- Above condition satisfied if (Fuller, et al. 1994):
  - i. Include in  $x_k$  dummy variables that define subgroups ii Response probabilities  $\theta_k$  are constant in each subgroup.



• What about if models differ between respondents and nonrespondents

$$y_{k} = \begin{cases} \boldsymbol{x}_{k}^{T} \ \boldsymbol{\beta}_{1} + e_{k} \text{ if } k \in U_{1} \text{ (respondents)} \\ \boldsymbol{x}_{k}^{T} \ \boldsymbol{\beta}_{2} + e_{k} \text{ if } k \in U_{2} \text{ (nonrespondents)} \end{cases}$$

- Model bias:  $B_{\zeta} \left( \hat{Y}_{1U} \right) \doteq \left( \boldsymbol{\beta}_1 \boldsymbol{\beta}_2 \right)^T \sum_{U_2} \boldsymbol{x}_k$
- Need to follow-up



- Set-up
  - Respondents  $(n_1)$  in sample *s*: put in first group (h = 1)
  - Split nonrespondent portion of sample *s* into (*L*-1) response homogeneity groups (*h* = 2, ... *L*)
  - Select follow-up sample in each nonresponse group (h = 2, ... L)
    - $n_h$  units in *h*-*th* nonreponse group
    - $m_h$  units sampled in h th nonreponse group
    - $b_h$  units respond to FU in *h*-*th* sampled nonreponse group



• Parameter of interest is the population total

$$Y = \sum_{k \in U} y_k$$

• Estimator is

$$\hat{Y} = \frac{N}{n} \left( \sum_{k \in s_1} y_k + \sum_{h=2}^{L} \frac{n_h}{m_h} \frac{m_h}{b_h} \sum_{k \in s_{2h}} y_k \right)$$
$$= N \left( w_1 \ \overline{y}_1 + \sum_{h=2}^{L} w_h \ \overline{y}_{2h} \right)$$

• Estimator does not include auxiliary data (but could)



• Assume nonrespondents are missing completely at random

$$E(\hat{Y}) = N\left(W_1 \,\overline{Y}_1 + \sum_{h=2}^{L} W_h \,\overline{Y}_h\right) = N\overline{Y} = Y$$
$$Var(\hat{Y}) = N\left\{\left(\frac{1}{\nu} - 1\right)S^2 + \sum_{h=2}^{L} \frac{1}{\nu}\left(\frac{1}{\nu_h \, r_h^*} - 1\right)W_h \, S_h^2\right\}$$

- Anticipated response rates  $r_h^*$  for h = 2, ... L
- Sampling fractions v and  $v_h$  to be determined

$$v = n / N$$
 and  $v_h = m_h / n_h$  for  $h = 2, \dots L$ 



- Costs
  - $c_0$  contact cost for each of the initial units n units
  - $c_1$  processing cost for each of the  $n_1$  respondents
  - $c_{2h}$  contact cost for each of the  $m_h$  units in follow-up sample
  - $c_{3h}$  processing cost of each of the  $b_h$  respondents in follow-up
- Overall cost is random so we work with expected cost

$$C^* = N v \left( c_0 + W_1 c_1 + \sum_{h=2}^{L} W_h v_h \left( c_{2h} + r_h^* c_{3h} \right) \right)$$



• Allocation problem

Minimize 
$$N\left\{ \left(\frac{1}{\nu} - 1\right)S^2 + \sum_{h=1}^{L} \frac{1}{\nu} \left(\frac{1}{\nu_h r_h^*} - 1\right)W_h S_h^2 \right\}$$

with respect to  $\nu$  and  $\nu_h$  (h = 2, ..., L)

subject to 
$$N \nu \left( c_0 + W_1 c_1 + \sum_{h=2}^{L} W_h \nu_h (c_{2h} + r_h^* c_{3h}) \right) = C^*$$

and  $0 < v \le 1, 0 < v_h \le 1$ 



- Solution to problem
  - by nonlinear programming techniques Trust region method
  - use of Proc OPTMODEL in SAS 9.3
  - Closed form expression as in Rao (1973) ignoring bounds

$$v_{h} = \sqrt{\frac{S_{h}^{2} (c_{0} + W_{1} c_{1})}{r_{h}^{*} (c_{2h} + r_{h}^{*} c_{3h}) \left(S^{2} - \sum_{h=2}^{L} W_{h} S_{h}^{2}\right)}}$$



### 4. Hansen and Hurtwitz (1946)

- Survey of 40,000 retail stores
  - initial contact by mail and follow-up by interview
  - one response group and one nonresponse group (h = 2)
  - $c_0 = 0.1$ ,  $c_1 = 0.4$  and  $c_2 = 4.1$  and  $c_3 = 0.4$  (US \$)
  - H&H looked at the reverse problem

Minimize  $(Nc_0 + Nc_1W_1)v + Nc_2W_2vv_2$ 

with respect to v and  $v_2$ 

Subject to 
$$\left(\frac{1}{v}-1\right)S^2 + W_2 S_2^2 \frac{1}{v} \left(\frac{1}{v_2}-1\right) = V$$



### 4. Hansen and Hurtwitz (1946)

• Our problem formulation with their data:

Minimize 
$$\left(\frac{1}{v}-1\right)+W_2\frac{1}{v}\left(\frac{1}{v_2}-1\right)+W_2\frac{1}{v}\frac{1}{v_2}\left(\frac{1}{v_2}-1\right)$$
  
with respect to  $v$  and  $v_2$   
Subject to  $(Nc_0+Nc_1W_1)v+N(c_2+r_2^*c_3)W_2vv_2=C^*$ 

- They assumed 100% response to follow-up ( $r_2^* = 1$ )
- We consider two cases:  $(r_2^* = 1)$  and  $(r_2^* = 0.5)$



#### 4. Hansen and Hurtwitz (1946)

|      | $r_2^* = 1$ |       |         | $r_2^* = 0.5$ |         |         |
|------|-------------|-------|---------|---------------|---------|---------|
| C*   | V           | $v_2$ | Min Var | V             | $\nu_2$ | Min Var |
| 1500 | 0.033       | 0.365 | 54.9    | 0.026         | 0.528   | 90.6    |
| 2000 | 0.045       | 0.365 | 40.9    | 0.035         | 0.528   | 67.7    |
| 2500 | 0.056       | 0.365 | 32.5    | 0.044         | 0.528   | 54.0    |
| 3000 | 0.067       | 0.365 | 27.0    | 0.052         | 0.528   | 44.8    |
| 3500 | 0.078       | 0.365 | 23.0    | 0.061         | 0.528   | 38.3    |
| 4000 | 0.089       | 0.365 | 20.0    | 0.070         | 0.528   | 33.4    |
| 4500 | 0.100       | 0.365 | 17.6    | 0.078         | 0.528   | 29.5    |
| 5000 | 0.111       | 0.365 | 15.8    | 0.087         | 0.528   | 26.5    |

#### Statistics Statistique Canada

## **5.** Conclusion

- Non-response usually handled at estimation stage with no follow-up
- However, nonresponse bias could be present even with calibration
- Follow-up of non-respondents should reduce nonresponse bias
- Incorporation of auxiliary data and estimated response probabilities in the estimation (given follow-up) can further attenuate nonresponse bias